
Grammar (Soft Skills)

Course Description: This course aims to enhance students' understanding of grammar while

simultaneously developing their soft skills, such as communication, teamwork, and emotional

intelligence. By the end of the course, students will be able to effectively communicate both in writing

and verbally, applying proper grammar and demonstrating strong interpersonal skills.

Introduction to Grammar and Soft Skills

• Overview of the course

• Importance of grammar in communication

• Introduction to soft skills: definition and relevance

Parts of Speech

• Review of nouns, verbs, adjectives, and adverbs

• Soft Skills Focus: Active Listening

o Exercises on listening comprehension and summarizing

Sentence Structure

• Simple, compound, and complex sentences

• Soft Skills Focus: Clear Communication

o Practice writing concise and clear messages

Punctuation and Mechanics

• Common punctuation marks and their uses

• Soft Skills Focus: Nonverbal Communication

o Role-playing exercises focusing on body language and tone

Common Grammar Mistakes

• Identifying and correcting errors

• Soft Skills Focus: Feedback and Constructive Criticism

o Peer review sessions with focus on positive feedback

Verbal Communication Skills

• Strategies for effective verbal communication

• Soft Skills Focus: Public Speaking

o Preparation and delivery of short presentations

Writing Skills

• Business writing: emails, reports, and proposals

• Soft Skills Focus: Collaboration

o Group writing projects

Professional Etiquette

• Grammar in professional settings

• Soft Skills Focus: Networking

o Mock networking events and elevator pitches

Emotional Intelligence in Communication

• Understanding emotions in interactions

• Soft Skills Focus: Empathy and Understanding

o Scenarios and discussions to practice empathy

Review and Application

• Comprehensive review of grammar topics

• Final project: Combine grammar and soft skills in a presentation or written report

Assessment and Feedback

• Quizzes and assessments on grammar

• Reflection on soft skills development throughout the course

Conclusion and Future Applications

• Discussing the relevance of grammar and soft skills in personal and professional contexts

• Career readiness: integrating skills into resumes and interviews

Assessment Methods

• Weekly quizzes on grammar topics

• Group projects and presentations

• Participation in discussions and role-plays

• Final project integrating grammar and soft skills

Required Materials

• Textbook on grammar (e.g., "The Elements of Style" by Strunk and White)

• Articles or resources on soft skills

• Access to online writing and grammar tools

Recommended Resources

• Online grammar resources (e.g., Grammarly, Purdue OWL)

• Soft skills development platforms (e.g., LinkedIn Learning)

Aptitude - Logical

Course Overview:

This course aims to develop students' logical reasoning abilities through various techniques and

problem-solving strategies. It will cover verbal and non-verbal reasoning, puzzles, and analytical

reasoning.

Introduction to Logical Reasoning

• Definition and Importance of Logical Reasoning

• Types of Logical Reasoning

• Basic Concepts and Terminology

Verbal Reasoning

• Statements and Assumptions

• Arguments and Conclusions

• Strengthening and Weakening Arguments

• Practice Exercises

Syllogisms

• Understanding Syllogisms

• Types of Syllogisms

• Venn Diagrams and Their Applications

• Practice Problems

Non-Verbal Reasoning

• Introduction to Non-Verbal Reasoning

• Patterns and Series

• Analogies and Classification

• Practice Exercises

Analytical Reasoning

• Understanding Analytical Puzzles

• Arrangement and Seating Problems

• Data Sufficiency

• Practice Problems

Mathematical Reasoning

• Number Series and Patterns

• Numerical Puzzles

• Basic Probability and Combinatorics

• Practice Exercises

Data Interpretation

• Graphs and Charts

• Tables and Data Analysis

• Critical Evaluation of Data

• Practice Problems

Logical Deductions

• Rules of Deduction

• Common Logical Fallacies

• Solving Deductive Reasoning Problems

• Practice Exercises

Advanced Topics in Logical Reasoning

• Logical Games and Strategies

• Complex Problem Solving

• Real-World Applications of Logical Reasoning

• Practice Problems

Mock Tests and Review

• Full-Length Mock Tests

• Review of Key Concepts

• Strategies for Improvement

• Q&A Session

Assessment:

• Weekly quizzes and assignments

• Mid-term exam

• Final exam

• Participation in class discussions and group activities

Recommended Resources:

• Books on Logical Reasoning and Aptitude

• Online resources and practice platforms

• Past papers and sample tests

Course Outcome:

Students will develop enhanced logical reasoning skills applicable in academic, professional, and

everyday problem-solving scenarios.

Aptitude Verbal

Course Overview

This course focuses on developing verbal reasoning skills essential for various competitive exams and

professional settings. It covers vocabulary enhancement, comprehension skills, and critical analysis of

texts.

Course Objectives

• Improve vocabulary and word usage

• Enhance reading comprehension and interpretation skills

• Develop analytical thinking through verbal reasoning exercises

• Practice verbal aptitude through sample questions and tests

Introduction to Verbal Aptitude

• Overview of verbal aptitude and its significance

• Types of verbal reasoning questions

• Strategies for approaching verbal aptitude tests

Vocabulary Development

• Importance of vocabulary in verbal reasoning

• Techniques for vocabulary enhancement (e.g., flashcards, word roots)

• Exercises on synonyms and antonyms

Reading Comprehension

• Strategies for effective reading

• Understanding main ideas and supporting details

• Practice passages and comprehension questions

Sentence Completion

• Techniques for sentence completion questions

• Contextual clues and grammatical structure

• Practice exercises

Analogies

• Understanding analogy questions

• Types of analogies (synonyms, antonyms, function)

• Practice with analogy exercises

Critical Reasoning

• Introduction to critical reasoning concepts

• Identifying assumptions and arguments

• Practice with critical reasoning questions

Paraphrasing and Summarization

• Techniques for paraphrasing texts

• Summarizing key points effectively

• Exercises on paraphrasing and summarization

Test-Taking Strategies

• Time management during verbal aptitude tests

• Techniques for eliminating incorrect answers

• Mock test and review

Practice and Application

• Comprehensive practice of verbal aptitude questions

• Group discussions and analysis of answers

• Individual feedback sessions

Review and Final Assessment

• Review of key concepts covered in the course

• Final assessment (mock test)

• Strategies for continued improvement beyond the course

Resources

• Recommended reading materials

• Online practice tools and websites

• Vocabulary building apps and resources

Evaluation

• Participation and engagement in class discussions

• Weekly quizzes on vocabulary and comprehension

• Performance in the final assessment

Aptitude- Quantitative

1. Number Systems

• Types of numbers (natural, whole, integers, rational, irrational)

• Factors and multiples

• Prime numbers and divisibility rules

• LCM and GCD

2. Arithmetic

• Percentages

• Profit and Loss

• Simple and Compound Interest

• Ratio and Proportion

• Averages

3. Algebra

• Algebraic expressions and identities

• Solving linear equations and inequalities

• Quadratic equations

• Exponents and logarithms

4. Geometry

• Basic geometric shapes and properties (triangles, circles, quadrilaterals)

• Perimeter, area, and volume calculations

• Angles and their properties

• Coordinate geometry basics

5. Mensuration

• Areas and volumes of 2D and 3D shapes

• Surface area calculations

6. Data Interpretation

• Reading and interpreting charts (bar graphs, pie charts, line graphs)

• Tables and data analysis

• Mean, median, mode

7. Time and Work

• Work efficiency concepts

• Time taken by multiple people to complete work

• Pipes and cisterns problems

8. Speed, Distance, and Time

• Relative speed problems

• Problems involving trains, cars, and boats

9. Probability and Statistics

• Basic probability concepts

• Combinations and permutations

• Descriptive statistics

10. Logical Reasoning

• Number series and sequences

• Verbal and non-verbal reasoning

• Puzzles and pattern recognition

Assessment Methods

• Quizzes and tests

• Problem-solving exercises

• Mock examinations

Recommended Resources

• Textbooks and reference materials

• Online practice platforms

• Previous years’ question papers

Study Tips

• Regular practice and review of concepts

• Time management strategies during tests

• Focus on weak areas with targeted exercises

Syllabus

Fundamentals of C Programming

Course Overview

• Introduction to C Programming

• Importance of C in Software Development

Introduction to C

• History and Evolution of C

• Setting up the Development Environment

• Writing Your First C Program

Basic Syntax and Structure

• C Program Structure

• Data Types and Variables

• Input and Output (printf, scanf)

Operators and Expressions

• Arithmetic Operators

• Relational and Logical Operators

• Increment and Decrement Operators

Control Structures

• Conditional Statements (if, else, switch)

• Looping Constructs (for, while, do-while)

Functions

• Function Definition and Declaration

• Function Parameters and Return Types

• Scope and Lifetime of Variables

Arrays

• One-Dimensional Arrays

• Multidimensional Arrays

• Array Manipulation Techniques

Pointers

• Understanding Pointers and Memory Addresses

• Pointer Arithmetic

• Pointers and Arrays

Strings

• String Handling in C

• Common String Functions (strlen, strcpy, strcat)

• Input and Output with Strings

Structures and Unions

• Defining and Using Structures

• Nested Structures

• Introduction to Unions

File Handling

• Opening, Reading, Writing, and Closing Files

• File Operations (fopen, fread, fwrite, fclose)

• Error Handling in File Operations

Dynamic Memory Allocation

• Using malloc, calloc, realloc, and free

• Memory Leaks and Management

Advanced Topics

• Preprocessor Directives (macros, include)

• Basic Error Handling

• Introduction to Linked Lists

Debugging and Testing

• Common Debugging Techniques

• Using Debuggers (gdb)

• Writing Test Cases

Project and Review

• Final Project Presentation

• Review of Key Concepts

• Final Exam Preparation

Resources

• Recommended Textbooks

• Online Resources and Tutorials

• Community Forums and Discussion Groups

Assessment

• Weekly Assignments

• Midterm Exam

• Final Project

• Final Exam

Programming in C Syllabus
Course Overview

This course introduces students to programming using the C language. It covers fundamental

programming concepts, C syntax, and data structures, providing a strong foundation for further study

in computer science.

Prerequisites

 Basic knowledge of computer operations

 Familiarity with any programming concepts (preferred but not required)

Course Objectives

 Understand the syntax and semantics of the C programming language.

 Develop problem-solving skills and algorithmic thinking.

 Write, debug, and optimize C programs.

 Understand basic data structures and memory management.

Introduction to C

 Overview of C language and its history

 Setting up the development environment

 Basic structure of a C program

 Compilation and execution process

Data Types and Variables

 Basic data types: int, float, char, double

 Variable declaration and initialization

 Constants and literals

 Type conversions

Operators and Expressions

 Arithmetic, relational, logical, and bitwise operators

 Operator precedence and associativity

 Expressions and evaluation

Control Structures

 Conditional statements: if, if-else, switch

 Looping constructs: for, while, do-while

 Break and continue statements

Functions

 Function declaration and definition

 Function parameters and return values

 Scope and lifetime of variables

 Recursion basics

Arrays

 Introduction to arrays and their declaration

 One-dimensional and multi-dimensional arrays

 Array manipulation and common algorithms (sorting, searching)

Strings

 String declaration and initialization

 Standard string functions (strlen, strcpy, strcat, strcmp)

 Character arrays vs. string literals

Pointers

 Understanding pointers and memory addresses

 Pointer arithmetic

 Pointers and arrays

 Dynamic memory allocation (malloc, calloc, free)

Structures and Unions

 Defining and using structures

 Accessing structure members

 Unions and their applications

 Enumerated types

File I/O

 File handling: opening, reading, writing, and closing files

 Text and binary file operations

 Error handling in file operations

Preprocessor Directives and Macros

 Understanding the C preprocessor

 Common preprocessor directives (#define, #include, #ifdef)

 Creating and using macros

Basic Data Structures

 Introduction to linked lists

 Basic operations (insertion, deletion, traversal)

 Overview of stacks and queues

Advanced Topics (optional)

 Function pointers

 Basic concepts of multi-threading (if time permits)

 Introduction to C libraries

Project and Review

 Project work (individual or group)

 Review of key concepts

 Final exam preparation

Assessment

 Weekly assignments and quizzes

 Midterm exam

 Final project

 Final exam

Recommended Textbooks

 "The C Programming Language" by Brian W. Kernighan and Dennis M. Ritchie

 "C Programming: A Modern Approach" by K. N. King

Additional Resources

 Online coding platforms (e.g., LeetCode, HackerRank)

 C programming documentation (e.g., cppreference.com)

Data Structures and Algorithms

Course Description: This course provides an in-depth study of data structures and algorithms,

emphasizing their design, analysis, and implementation. Students will learn to choose appropriate data

structures and algorithms for solving various computational problems.

Prerequisites:

• Introduction to Programming (preferably in Python, Java, or C++)

• Basic knowledge of mathematical concepts and complexity analysis

Course Objectives:

• Understand the fundamental data structures and their applications.

• Analyze the time and space complexity of algorithms.

• Implement various algorithms and data structures in a programming language.

• Develop problem-solving skills using algorithmic techniques.

Introduction to Data Structures

• Overview of data structures

• Importance in computer science

Arrays and Strings

• Basics of arrays and their operations

• String manipulation and algorithms

Linked Lists

• Singly linked lists

• Doubly linked lists

• Circular linked lists

Stacks and Queues

• Stack operations and applications

• Queue operations and applications (including circular queues)

Trees

• Binary trees, binary search trees

• Tree traversals (in-order, pre-order, post-order)

Advanced Tree Structures

• AVL trees

• Red-Black trees

• B-trees and tries

Graphs

• Graph representations (adjacency matrix, adjacency list)

• Graph traversal algorithms (BFS, DFS)

Hashing

• Hash tables and hash functions

• Collision resolution techniques

Sorting Algorithms

• Comparison-based sorting (quick sort, merge sort, heap sort)

• Non-comparison-based sorting (counting sort, radix sort)

Searching Algorithms

• Linear search vs binary search

• Search algorithms in trees and graphs

Algorithm Design Techniques

• Divide and conquer

• Greedy algorithms

• Dynamic programming

Complexity Analysis

• Big O, Big Θ, and Big Ω notations

• Time and space complexity analysis

Advanced Topics

• Backtracking algorithms

• NP-completeness and approximation algorithms

Review and Project Presentations

• Recap of key concepts

• Student presentations on project topics

Assessment and Grading:

• Homework Assignments: 30%

• Midterm Exam: 20%

• Final Exam: 30%

• Project: 20%

Recommended Resources:

• Textbooks:

o "Data Structures and Algorithms in Java" by Robert Lafore

o "Introduction to Algorithms" by Thomas H. Cormen et al.

• Online Resources:

o LeetCode

o GeeksforGeeks

o HackerRank

Core Java Syllabus
Course Overview

This course introduces students to the core concepts of Java programming, including syntax, object-

oriented programming, exception handling, and basic Java libraries. By the end of the course, students

should be able to write, debug, and maintain Java applications.

Introduction to Java

 Overview of Java

o History and features of Java

o Java Development Kit (JDK), Java Runtime Environment (JRE), and Java Virtual

Machine (JVM)

 Setting up the Java Environment

o Installing JDK

o Using an Integrated Development Environment (IDE)

Java Basics

 Data Types and Variables

o Primitive data types: int, float, char, boolean, etc.

o Non-primitive data types: Strings, Arrays

 Operators and Expressions

o Arithmetic, relational, and logical operators

o Operator precedence

Control Statements

 Conditional Statements

o if, if-else, switch-case

 Looping Statements

o for, while, do-while

 Break and Continue Statements

Methods and Arrays

 Defining and Calling Methods

o Method parameters and return types

 Variable Scope and Lifetime

 Working with Arrays

o Single and multidimensional arrays

o Array operations and utility methods

Object-Oriented Programming (OOP) Concepts

 Classes and Objects

o Defining classes and creating objects

 Encapsulation and Access Modifiers

o public, private, protected

 Inheritance

o Superclass and subclass concepts

o Method overriding and the super keyword

Advanced OOP Concepts

 Polymorphism

o Method overloading and overriding

 Interfaces and Abstract Classes

o Defining and implementing interfaces

o Abstract classes and their use cases

 Composition vs. Inheritance

Exception Handling

 Understanding Exceptions

o Checked vs. unchecked exceptions

 Try-Catch Blocks

o Handling exceptions

 Finally Block and Throwing Exceptions

o Creating custom exceptions

Java Collections Framework

 Introduction to Collections

o Overview of Collection types: List, Set, Map

 Working with Lists and Sets

o ArrayList, LinkedList, HashSet, TreeSet

 Working with Maps

o HashMap, TreeMap, and their methods

Input and Output in Java

 File I/O

o Reading from and writing to files

 Streams and Readers/Writers

o Byte and character streams

 Serialization

Multithreading

 Introduction to Threads

o Creating and managing threads

 Synchronization

o Synchronization techniques and issues

 Thread communication

Java 8 Features

 Lambda Expressions

 Streams API

 Functional Interfaces

Best Practices and Project Work

 Coding Standards and Best Practices

 Final Project

o Application of learned concepts

o Presentation and code review

Assessment

 Quizzes and Assignments: Weekly quizzes and assignments to reinforce learning.

 Midterm Exam: Covers Weeks 1-6.

 Final Project: Comprehensive project demonstrating core concepts learned.

 Final Exam: Covers Weeks 7-12.

Recommended Resources

 Books:

o "Effective Java" by Joshua Bloch

o "Java: The Complete Reference" by Herbert Schildt

 Online Resources:

o Official Java documentation

o Online coding platforms (e.g., LeetCode, HackerRank)

Advanced Java

Course Overview: This course explores advanced concepts and technologies in Java programming. It

is designed for students who have a solid understanding of core Java and want to deepen their skills in

enterprise-level applications, frameworks, and modern programming practices.

Introduction to Advanced Java

 Overview of course objectives

 Review of Core Java fundamentals

 Java Development Kit (JDK) and Java Runtime Environment (JRE)

Java Concurrency

 Threads and Runnable interface

 Synchronization and Locks

 Executor framework

 Concurrent collections

 Best practices for multithreading

Java I/O and NIO

 Java I/O basics

 File I/O with NIO

 Channels and buffers

 Asynchronous I/O operations

Networking in Java

 Understanding sockets and server sockets

 Building client-server applications

 URL and URI handling

 Java RMI (Remote Method Invocation)

Java Database Connectivity (JDBC)

 Introduction to JDBC

 Connecting to databases

 Executing SQL queries

 Handling transactions

 ORM frameworks (Hibernate overview)

Java Frameworks - Spring

 Introduction to Spring Framework

 Dependency Injection

 Spring Boot basics

 RESTful web services with Spring

Java Web Technologies

 Servlets and JSP

 MVC architecture

 Introduction to JavaServer Faces (JSF)

 Building a web application

Security in Java Applications

 Java security architecture

 Secure coding practices

 Authentication and authorization

 Overview of Java Cryptography Architecture (JCA)

Java Messaging Services (JMS)

 Understanding messaging concepts

 JMS API overview

 Message-driven beans

 Integration with other systems

Java and Microservices

 Introduction to microservices architecture

 Building microservices with Spring Boot

 Service discovery and load balancing

 API Gateway concepts

Performance Tuning and Profiling

 Identifying performance bottlenecks

 Java Virtual Machine (JVM) tuning

 Profiling tools (VisualVM, JProfiler)

 Best practices for efficient coding

Testing in Java

 Unit testing with JUnit

 Integration testing with Spring

 Mocking frameworks (Mockito)

 Test-driven development (TDD) principles

Project Work

 Group project: Developing an enterprise-level application

 Applying concepts learned throughout the course

 Code reviews and feedback sessions

Course Review and Future Trends

 Review of key topics covered

 Discussion on emerging technologies (e.g., Java 17+, reactive programming)

 Career paths and industry applications of advanced Java

Assessment:

 Weekly quizzes

 Mid-term project

 Final group project

 Participation in discussions and coding exercises

Recommended Resources:

 "Effective Java" by Joshua Bloch

 "Java Concurrency in Practice" by Brian Goetz

 Online resources and documentation (Oracle, Spring, etc.)

Database Management Systems (DBMS)

Course Description:

This course provides an introduction to the principles and practices of database management systems.

Topics include database design, SQL, transaction management, and data modeling.

Learning Objectives:

By the end of this course, students will be able to:

1. Understand the fundamental concepts of databases and DBMS.

2. Design and implement relational databases using ER modeling and normalization.

3. Write complex SQL queries for data manipulation and retrieval.

4. Understand and implement transaction management and concurrency control.

5. Explore advanced topics such as NoSQL databases and data warehousing.

Prerequisites:

 Basic programming knowledge

 Familiarity with data structures and algorithms

Course Topics:

Introduction to Databases

 Definition of a Database and DBMS

 History and Evolution of Databases

 Types of DBMS (Relational, NoSQL, etc.)

Database Design

 Data Modeling Concepts

 Entity-Relationship (ER) Diagrams

 Normalization and Denormalization

Structured Query Language (SQL)

 Introduction to SQL

 Data Definition Language (DDL)

 Data Manipulation Language (DML)

Advanced SQL

 Joins, Subqueries, and Set Operations

 Aggregate Functions and Grouping

 Views and Indexes

Transaction Management

 ACID Properties

 Transactions in SQL

 Concurrency Control Techniques

Database Architecture

 Three-Level Architecture

 Physical vs. Logical Data Independence

 Client-Server Architecture

Data Storage and Indexing

 File Organization

 B-Trees and Hash Indexing

 Performance Optimization Techniques

NoSQL Databases

 Introduction to NoSQL

 Types of NoSQL Databases (Document, Key-Value, Column-Family, Graph)

 When to use NoSQL vs. Relational Databases

Data Warehousing and OLAP

 Concepts of Data Warehousing

 ETL Process

 Online Analytical Processing (OLAP) Tools

Security and Data Integrity

 Database Security Issues

 Access Control and Authentication

 Data Integrity Constraints

Current Trends and Future Directions

 Big Data and Cloud Databases

 Database as a Service (DBaaS)

 Emerging Technologies in Databases

Assessment Methods:

 Quizzes: [Percentage of final grade]

 Assignments: [Percentage of final grade]

 Midterm Exam: [Percentage of final grade]

 Final Project: [Percentage of final grade]

 Final Exam: [Percentage of final grade]

Required Texts and Resources:

 [Textbook Title, Author, Edition]

 Additional reading materials and online resources provided during the course.

Academic Integrity:

Students are expected to adhere to the highest standards of academic integrity. Plagiarism and

cheating will not be tolerated.

Accessibility:

Students requiring accommodations should contact the instructor to discuss their needs.

Python

Course Overview

• Objective: To provide a comprehensive understanding of Python programming and its

applications.

• Prerequisites: Basic computer literacy; no prior programming experience required (for

beginner courses).

Introduction to Python

• Introduction to Python: History and Applications

• Setting up the Python environment (Anaconda, Jupyter Notebook, or IDEs like PyCharm)

• Writing your first Python program

• Understanding syntax, comments, and basic input/output

Basic Data Types and Variables

• Data types: integers, floats, strings, booleans

• Variables and constants

• Type conversion and type casting

• Basic operations and expressions

Control Structures

• Conditional statements (if, elif, else)

• Loops: for loops, while loops

• Understanding the range function

• Loop control statements (break, continue, pass)

Data Structures

• Lists: creation, indexing, slicing, and methods

• Tuples: immutability and operations

• Dictionaries: key-value pairs and methods

• Sets: unique collections and set operations

Functions and Modules

• Defining and calling functions

• Function parameters and return values

• Scope of variables

• Introduction to modules and libraries

• Importing modules and using standard libraries

Error Handling and File I/O

• Understanding exceptions and error types

• Using try, except, finally blocks

• Reading from and writing to files

• Working with CSV files

Object-Oriented Programming (OOP)

• Introduction to OOP concepts: classes and objects

• Defining classes and creating objects

• Attributes and methods

• Inheritance and polymorphism

Advanced Topics

• List comprehensions

• Lambda functions and functional programming

• Decorators and generators

• Introduction to regular expressions

Working with Libraries

• Overview of popular libraries: NumPy, pandas, Matplotlib

• Basic data manipulation with pandas

• Data visualization with Matplotlib

Project Work

• Group project or individual project

• Application of learned concepts to solve real-world problems

• Presentations and code reviews

Final Assessment

• Final exam covering all topics

• Optional: Additional project or coding challenge

Future Directions

• Introduction to frameworks (e.g., Flask, Django)

• Brief overview of data science, machine learning, and web development with Python

• Resources for further learning and exploration

Additional Resources

• Recommended textbooks and online courses

• Python documentation and community forums

• GitHub for version control and collaboration

Assessment Criteria

• Participation and attendance

• Weekly quizzes and assignments

• Project work

• Final exam

Course Title: Android Development

Course Objectives:

• Understand the fundamentals of Android application development.

• Build functional Android applications using best practices.

• Explore advanced features such as networking, databases, and UI design.

Introduction to Android

• Overview of Android OS

• Setting up the development environment (Android Studio)

• Understanding Android architecture

Android Basics

• Creating your first Android app

• Understanding Activities and Intents

• UI components: TextViews, Buttons, and Layouts

User Interface Design

• Layouts (Linear, Relative, Constraint)

• Styles and Themes

• Introduction to Material Design

Navigation and Fragments

• Fragment lifecycle and management

• Creating multi-screen applications

• Implementing navigation components

Data Storage

• Shared Preferences

• SQLite database

• Room Persistence Library

Networking

• Introduction to REST APIs

• Using Retrofit for network calls

• Handling JSON data

Background Tasks

• AsyncTask and Handlers

• Introduction to WorkManager

• Background processing best practices

Advanced UI Components

• RecyclerView and Adapters

• Custom Views and Animations

• Touch and Gesture handling

Location Services and Maps

• Using GPS and location services

• Google Maps integration

• Geofencing and location tracking

Push Notifications and Firebase

• Introduction to Firebase

• Implementing push notifications

• Using Firebase Authentication

Testing and Debugging

• Unit testing and UI testing

• Debugging techniques in Android Studio

• Best practices for writing testable code

Final Project and Review

• Project presentations

• Code review and feedback

• Course wrap-up and next steps in Android development

Assessment:

• Weekly assignments and quizzes

• Final project showcasing the development of a fully functional Android app

Recommended Resources:

• Books: "Android Programming: The Big Nerd Ranch Guide," "Head First Android

Development"

• Online Resources: Android Developer Documentation, Udacity or Coursera courses

